Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Evaluating Spiking Neural Network On Neuromorphic Platform For Human Activity Recognition (2308.00787v1)

Published 1 Aug 2023 in cs.NE, cs.HC, and cs.LG

Abstract: Energy efficiency and low latency are crucial requirements for designing wearable AI-empowered human activity recognition systems, due to the hard constraints of battery operations and closed-loop feedback. While neural network models have been extensively compressed to match the stringent edge requirements, spiking neural networks and event-based sensing are recently emerging as promising solutions to further improve performance due to their inherent energy efficiency and capacity to process spatiotemporal data in very low latency. This work aims to evaluate the effectiveness of spiking neural networks on neuromorphic processors in human activity recognition for wearable applications. The case of workout recognition with wrist-worn wearable motion sensors is used as a study. A multi-threshold delta modulation approach is utilized for encoding the input sensor data into spike trains to move the pipeline into the event-based approach. The spikes trains are then fed to a spiking neural network with direct-event training, and the trained model is deployed on the research neuromorphic platform from Intel, Loihi, to evaluate energy and latency efficiency. Test results show that the spike-based workouts recognition system can achieve a comparable accuracy (87.5\%) comparable to the popular milliwatt RISC-V bases multi-core processor GAP8 with a traditional neural network ( 88.1\%) while achieving two times better energy-delay product (0.66 \si{\micro\joule\second} vs. 1.32 \si{\micro\joule\second}).

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube