Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Imposing nonlocal boundary conditions in Galerkin-type methods based on non-interpolatory functions (2308.00595v1)

Published 1 Aug 2023 in math.NA and cs.NA

Abstract: The imposition of inhomogeneous Dirichlet (essential) boundary conditions is a fundamental challenge in the application of Galerkin-type methods based on non-interpolatory functions, i.e., functions which do not possess the Kronecker delta property. Such functions typically are used in various meshfree methods, as well as methods based on the isogeometric paradigm. The present paper analyses a model problem consisting of the Poisson equation subject to non-standard boundary conditions. Namely, instead of classical boundary conditions, the model problem involves Dirichlet- and Neumann-type nonlocal boundary conditions. Variational formulations with strongly and weakly imposed inhomogeneous Dirichlet-type nonlocal conditions are derived and compared within an extensive numerical study in the isogeometric framework based on non-uniform rational B-splines (NURBS). The attention in the numerical study is paid mainly to the influence of the nonlocal boundary conditions on the properties of the considered discretisation methods.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.