Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Discovery of Stable Hybrid Organic-inorganic Double Perovskites for High-performance Solar Cells via Machine-learning Algorithms and Crystal Graph Convolution Neural Network Method (2308.00490v1)

Published 1 Aug 2023 in cond-mat.mtrl-sci, cs.CE, and physics.comp-ph

Abstract: Hybrid peroskite solar cells are newly emergent high-performance photovoltaic devices, which suffer from disadvantages such as toxic elements, short-term stabilities, and so on. Searching for alternative perovskites with high photovoltaic performances and thermally stabilities is urgent in this field. In this work, stimulated by the recently proposed materials-genome initiative project, firstly we build classical machine-learning algorithms for the models of formation energies, bangdaps and Deybe temperatures for hybrid organic-inorganic double perovskites, then we choose the high-precision models to screen a large scale of double-perovskite chemical space, to filter out good pervoskite candidates for solar cells. We also analyze features of importances for the the three target properties to reveal the underlying mechanisms and discover the typical characteristics of high-performances double perovskites. Secondly we adopt the Crystal graph convolution neural network (CGCNN), to build precise model for bandgaps of perovskites for further filtering. Finally we use the ab-initio method to verify the results predicted by the CGCNN method, and find that, six out of twenty randomly chosen (CH3)2NH2-based HOIDP candidates possess finite bandgaps, and especially, (CH3)2NH2AuSbCl6 and (CH3)2NH2CsPdF6 possess the bandgaps of 0.633 eV and 0.504 eV, which are appropriate for photovoltaic applications. Our work not only provides a large scale of potential high-performance double-perovskite candidates for futural experimental or theoretical verification, but also showcases the effective and powerful prediction of the combined ML and CGCNN method proposed for the first time here.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Linkang Zhan (2 papers)
  2. Danfeng Ye (1 paper)
  3. Xinjian Qiu (1 paper)
  4. Yan Cen (4 papers)

Summary

We haven't generated a summary for this paper yet.