Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Discovery of Stable Hybrid Organic-inorganic Double Perovskites for High-performance Solar Cells via Machine-learning Algorithms and Crystal Graph Convolution Neural Network Method (2308.00490v1)

Published 1 Aug 2023 in cond-mat.mtrl-sci, cs.CE, and physics.comp-ph

Abstract: Hybrid peroskite solar cells are newly emergent high-performance photovoltaic devices, which suffer from disadvantages such as toxic elements, short-term stabilities, and so on. Searching for alternative perovskites with high photovoltaic performances and thermally stabilities is urgent in this field. In this work, stimulated by the recently proposed materials-genome initiative project, firstly we build classical machine-learning algorithms for the models of formation energies, bangdaps and Deybe temperatures for hybrid organic-inorganic double perovskites, then we choose the high-precision models to screen a large scale of double-perovskite chemical space, to filter out good pervoskite candidates for solar cells. We also analyze features of importances for the the three target properties to reveal the underlying mechanisms and discover the typical characteristics of high-performances double perovskites. Secondly we adopt the Crystal graph convolution neural network (CGCNN), to build precise model for bandgaps of perovskites for further filtering. Finally we use the ab-initio method to verify the results predicted by the CGCNN method, and find that, six out of twenty randomly chosen (CH3)2NH2-based HOIDP candidates possess finite bandgaps, and especially, (CH3)2NH2AuSbCl6 and (CH3)2NH2CsPdF6 possess the bandgaps of 0.633 eV and 0.504 eV, which are appropriate for photovoltaic applications. Our work not only provides a large scale of potential high-performance double-perovskite candidates for futural experimental or theoretical verification, but also showcases the effective and powerful prediction of the combined ML and CGCNN method proposed for the first time here.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube