Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Computation Offloading with Multiple Agents in Edge-Computing-Supported IoT (2308.00463v1)

Published 1 Aug 2023 in cs.DC

Abstract: With the development of the Internet of Things (IoT) and the birth of various new IoT devices, the capacity of massive IoT devices is facing challenges. Fortunately, edge computing can optimize problems such as delay and connectivity by offloading part of the computational tasks to edge nodes close to the data source. Using this feature, IoT devices can save more resources while still maintaining the quality of service. However, since computation offloading decisions concern joint and complex resource management, we use multiple Deep Reinforcement Learning (DRL) agents deployed on IoT devices to guide their own decisions. Besides, Federated Learning (FL) is utilized to train DRL agents in a distributed fashion, aiming to make the DRL-based decision making practical and further decrease the transmission cost between IoT devices and Edge Nodes. In this article, we first study the problem of computation offloading optimization and prove the problem is an NP-hard problem. Then, based on DRL and FL, we propose an offloading algorithm that is different from the traditional method. Finally, we studied the effects of various parameters on the performance of the algorithm and verified the effectiveness of both the DRL and FL in the IoT system.

Citations (77)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.