Papers
Topics
Authors
Recent
Search
2000 character limit reached

Adversarially Robust Neural Legal Judgement Systems

Published 31 Jul 2023 in cs.CL and cs.AI | (2308.00165v1)

Abstract: Legal judgment prediction is the task of predicting the outcome of court cases on a given text description of facts of cases. These tasks apply NLP techniques to predict legal judgment results based on facts. Recently, large-scale public datasets and NLP models have increased research in areas related to legal judgment prediction systems. For such systems to be practically helpful, they should be robust from adversarial attacks. Previous works mainly focus on making a neural legal judgement system; however, significantly less or no attention has been given to creating a robust Legal Judgement Prediction(LJP) system. We implemented adversarial attacks on early existing LJP systems and found that none of them could handle attacks. In this work, we proposed an approach for making robust LJP systems. Extensive experiments on three legal datasets show significant improvements in our approach over the state-of-the-art LJP system in handling adversarial attacks. To the best of our knowledge, we are the first to increase the robustness of early-existing LJP systems.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.