Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

PATRONoC: Parallel AXI Transport Reducing Overhead for Networks-on-Chip targeting Multi-Accelerator DNN Platforms at the Edge (2308.00154v1)

Published 31 Jul 2023 in cs.AR

Abstract: Emerging deep neural network (DNN) applications require high-performance multi-core hardware acceleration with large data bursts. Classical network-on-chips (NoCs) use serial packet-based protocols suffering from significant protocol translation overheads towards the endpoints. This paper proposes PATRONoC, an open-source fully AXI-compliant NoC fabric to better address the specific needs of multi-core DNN computing platforms. Evaluation of PATRONoC in a 2D-mesh topology shows 34% higher area efficiency compared to a state-of-the-art classical NoC at 1 GHz. PATRONoC's throughput outperforms a baseline NoC by 2-8X on uniform random traffic and provides a high aggregated throughput of up to 350 GiB/s on synthetic and DNN workload traffic.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.