Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 116 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 59 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

A Trajectory K-Anonymity Model Based on Point Density and Partition (2307.16849v1)

Published 31 Jul 2023 in cs.CR and cs.LG

Abstract: As people's daily life becomes increasingly inseparable from various mobile electronic devices, relevant service application platforms and network operators can collect numerous individual information easily. When releasing these data for scientific research or commercial purposes, users' privacy will be in danger, especially in the publication of spatiotemporal trajectory datasets. Therefore, to avoid the leakage of users' privacy, it is necessary to anonymize the data before they are released. However, more than simply removing the unique identifiers of individuals is needed to protect the trajectory privacy, because some attackers may infer the identity of users by the connection with other databases. Much work has been devoted to merging multiple trajectories to avoid re-identification, but these solutions always require sacrificing data quality to achieve the anonymity requirement. In order to provide sufficient privacy protection for users' trajectory datasets, this paper develops a study on trajectory privacy against re-identification attacks, proposing a trajectory K-anonymity model based on Point Density and Partition (KPDP). Our approach improves the existing trajectory generalization anonymization techniques regarding trajectory set partition preprocessing and trajectory clustering algorithms. It successfully resists re-identification attacks and reduces the data utility loss of the k-anonymized dataset. A series of experiments on a real-world dataset show that the proposed model has significant advantages in terms of higher data utility and shorter algorithm execution time than other existing techniques.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.