Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

HierVST: Hierarchical Adaptive Zero-shot Voice Style Transfer (2307.16171v1)

Published 30 Jul 2023 in cs.SD, cs.AI, cs.MM, and eess.AS

Abstract: Despite rapid progress in the voice style transfer (VST) field, recent zero-shot VST systems still lack the ability to transfer the voice style of a novel speaker. In this paper, we present HierVST, a hierarchical adaptive end-to-end zero-shot VST model. Without any text transcripts, we only use the speech dataset to train the model by utilizing hierarchical variational inference and self-supervised representation. In addition, we adopt a hierarchical adaptive generator that generates the pitch representation and waveform audio sequentially. Moreover, we utilize unconditional generation to improve the speaker-relative acoustic capacity in the acoustic representation. With a hierarchical adaptive structure, the model can adapt to a novel voice style and convert speech progressively. The experimental results demonstrate that our method outperforms other VST models in zero-shot VST scenarios. Audio samples are available at \url{https://hiervst.github.io/}.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.