Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

StarSRGAN: Improving Real-World Blind Super-Resolution (2307.16169v1)

Published 30 Jul 2023 in eess.IV and cs.CV

Abstract: The aim of blind super-resolution (SR) in computer vision is to improve the resolution of an image without prior knowledge of the degradation process that caused the image to be low-resolution. The State of the Art (SOTA) model Real-ESRGAN has advanced perceptual loss and produced visually compelling outcomes using more complex degradation models to simulate real-world degradations. However, there is still room to improve the super-resolved quality of Real-ESRGAN by implementing recent techniques. This research paper introduces StarSRGAN, a novel GAN model designed for blind super-resolution tasks that utilize 5 various architectures. Our model provides new SOTA performance with roughly 10% better on the MANIQA and AHIQ measures, as demonstrated by experimental comparisons with Real-ESRGAN. In addition, as a compact version, StarSRGAN Lite provides approximately 7.5 times faster reconstruction speed (real-time upsampling from 540p to 4K) but can still keep nearly 90% of image quality, thereby facilitating the development of a real-time SR experience for future research. Our codes are released at https://github.com/kynthesis/StarSRGAN.

Citations (2)

Summary

We haven't generated a summary for this paper yet.