Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

StarSRGAN: Improving Real-World Blind Super-Resolution (2307.16169v1)

Published 30 Jul 2023 in eess.IV and cs.CV

Abstract: The aim of blind super-resolution (SR) in computer vision is to improve the resolution of an image without prior knowledge of the degradation process that caused the image to be low-resolution. The State of the Art (SOTA) model Real-ESRGAN has advanced perceptual loss and produced visually compelling outcomes using more complex degradation models to simulate real-world degradations. However, there is still room to improve the super-resolved quality of Real-ESRGAN by implementing recent techniques. This research paper introduces StarSRGAN, a novel GAN model designed for blind super-resolution tasks that utilize 5 various architectures. Our model provides new SOTA performance with roughly 10% better on the MANIQA and AHIQ measures, as demonstrated by experimental comparisons with Real-ESRGAN. In addition, as a compact version, StarSRGAN Lite provides approximately 7.5 times faster reconstruction speed (real-time upsampling from 540p to 4K) but can still keep nearly 90% of image quality, thereby facilitating the development of a real-time SR experience for future research. Our codes are released at https://github.com/kynthesis/StarSRGAN.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.