Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Feature Transportation Improves Graph Neural Networks (2307.16092v2)

Published 29 Jul 2023 in cs.LG

Abstract: Graph neural networks (GNNs) have shown remarkable success in learning representations for graph-structured data. However, GNNs still face challenges in modeling complex phenomena that involve feature transportation. In this paper, we propose a novel GNN architecture inspired by Advection-Diffusion-Reaction systems, called ADR-GNN. Advection models feature transportation, while diffusion captures the local smoothing of features, and reaction represents the non-linear transformation between feature channels. We provide an analysis of the qualitative behavior of ADR-GNN, that shows the benefit of combining advection, diffusion, and reaction. To demonstrate its efficacy, we evaluate ADR-GNN on real-world node classification and spatio-temporal datasets, and show that it improves or offers competitive performance compared to state-of-the-art networks.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube