Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rapid Flood Inundation Forecast Using Fourier Neural Operator (2307.16090v1)

Published 29 Jul 2023 in physics.flu-dyn and cs.LG

Abstract: Flood inundation forecast provides critical information for emergency planning before and during flood events. Real time flood inundation forecast tools are still lacking. High-resolution hydrodynamic modeling has become more accessible in recent years, however, predicting flood extents at the street and building levels in real-time is still computationally demanding. Here we present a hybrid process-based and data-driven ML approach for flood extent and inundation depth prediction. We used the Fourier neural operator (FNO), a highly efficient ML method, for surrogate modeling. The FNO model is demonstrated over an urban area in Houston (Texas, U.S.) by training using simulated water depths (in 15-min intervals) from six historical storm events and then tested over two holdout events. Results show FNO outperforms the baseline U-Net model. It maintains high predictability at all lead times tested (up to 3 hrs) and performs well when applying to new sites, suggesting strong generalization skill.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Alexander Y. Sun (4 papers)
  2. Zhi Li (275 papers)
  3. Wonhyun Lee (1 paper)
  4. Qixing Huang (78 papers)
  5. Bridget R. Scanlon (2 papers)
  6. Clint Dawson (30 papers)
Citations (7)

Summary

We haven't generated a summary for this paper yet.