Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
124 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GaitASMS: Gait Recognition by Adaptive Structured Spatial Representation and Multi-Scale Temporal Aggregation (2307.15981v2)

Published 29 Jul 2023 in cs.CV

Abstract: Gait recognition is one of the most promising video-based biometric technologies. The edge of silhouettes and motion are the most informative feature and previous studies have explored them separately and achieved notable results. However, due to occlusions and variations in viewing angles, their gait recognition performance is often affected by the predefined spatial segmentation strategy. Moreover, traditional temporal pooling usually neglects distinctive temporal information in gait. To address the aforementioned issues, we propose a novel gait recognition framework, denoted as GaitASMS, which can effectively extract the adaptive structured spatial representations and naturally aggregate the multi-scale temporal information. The Adaptive Structured Representation Extraction Module (ASRE) separates the edge of silhouettes by using the adaptive edge mask and maximizes the representation in semantic latent space. Moreover, the Multi-Scale Temporal Aggregation Module (MSTA) achieves effective modeling of long-short-range temporal information by temporally aggregated structure. Furthermore, we propose a new data augmentation, denoted random mask, to enrich the sample space of long-term occlusion and enhance the generalization of the model. Extensive experiments conducted on two datasets demonstrate the competitive advantage of proposed method, especially in complex scenes, i.e. BG and CL. On the CASIA-B dataset, GaitASMS achieves the average accuracy of 93.5\% and outperforms the baseline on rank-1 accuracies by 3.4\% and 6.3\%, respectively, in BG and CL. The ablation experiments demonstrate the effectiveness of ASRE and MSTA. The source code is available at https://github.com/YanSungithub/GaitASMS.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (38)
  1. A. Sepas-Moghaddam and A. Etemad, “Deep gait recognition: A survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, pp. 264–284, 2021.
  2. C. Shen, S. Yu, J. Wang, G. Q. Huang, and L. Wang, “A comprehensive survey on deep gait recognition: algorithms, datasets and challenges,” arXiv preprint arXiv:2206.13732, 2022.
  3. Z. Zhang, L. Tran, F. Liu, and X. Liu, “On learning disentangled representations for gait recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 1, pp. 345–360, 2020.
  4. X. Li, Y. Makihara, C. Xu, Y. Yagi, and M. Ren, “Gait recognition via semi-supervised disentangled representation learning to identity and covariate features,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13309–13319, 2020.
  5. C. Fan, Y. Peng, C. Cao, X. Liu, S. Hou, J. Chi, Y. Huang, Q. Li, and Z. He, “Gaitpart: Temporal part-based model for gait recognition,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020.
  6. H. Wu, J. Tian, Y. Fu, B. Li, and X. Li, “Condition-aware comparison scheme for gait recognition,” IEEE Transactions on Image Processing, vol. 30, pp. 2734–2744, 2021.
  7. Y. Zhang, Y. Huang, S. Yu, and L. Wang, “Cross-view gait recognition by discriminative feature learning,” IEEE Transactions on Image Processing, vol. 29, pp. 1001–1015, 2020.
  8. T. Wolf, M. Babaee, and G. Rigoll, “Multi-view gait recognition using 3d convolutional neural networks,” in 2016 IEEE International Conference on Image Processing (ICIP), pp. 4165–4169, 2016.
  9. S. Yu, H. Chen, E. B. G. Reyes, and N. Poh, “Gaitgan: Invariant gait feature extraction using generative adversarial networks,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 532–539, 2017.
  10. Z. Zhang, L. Tran, X. Yin, Y. Atoum, X. Liu, J. Wan, and N. Wang, “Gait recognition via disentangled representation learning,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 4710–4719, 2019.
  11. A. Sepas-Moghaddam and A. Etemad, “View-invariant gait recognition with attentive recurrent learning of partial representations,” IEEE Transactions on Biometrics, Behavior, and Identity Science, vol. 3, no. 1, pp. 124–137, 2020.
  12. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems, vol. 30, 2017.
  13. G. Li, L. Guo, R. Zhang, J. Qian, and S. Gao, “Transgait: Multimodal-based gait recognition with set transformer,” Applied Intelligence, vol. 53, pp. 1–13, 04 2022.
  14. X. Li, Y. Makihara, C. Xu, Y. Yagi, S. Yu, and M. Ren, “End-to-end model-based gait recognition,” in Proceedings of the Asian conference on computer vision, 2020.
  15. W. An, S. Yu, Y. Makihara, X. Wu, C. Xu, Y. Yu, R. Liao, and Y. Yagi, “Performance evaluation of model-based gait on multi-view very large population database with pose sequences,” IEEE Transactions on Biometrics, Behavior, and Identity Science, vol. 2, no. 4, pp. 421–430, 2020.
  16. W. An, R. Liao, S. Yu, Y. Huang, and P. C. Yuen, “Improving gait recognition with 3d pose estimation,” in Biometric Recognition: 13th Chinese Conference, CCBR 2018, Urumqi, China, August 11-12, 2018, Proceedings 13, pp. 137–147, Springer, 2018.
  17. J. Zheng, X. Liu, W. Liu, L. He, C. Yan, and T. Mei, “Gait recognition in the wild with dense 3d representations and a benchmark,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20228–20237, 2022.
  18. T. Teepe, A. Khan, J. Gilg, F. Herzog, S. Hörmann, and G. Rigoll, “Gaitgraph: Graph convolutional network for skeleton-based gait recognition,” in 2021 IEEE International Conference on Image Processing (ICIP), pp. 2314–2318, 2021.
  19. H. Chao, Y. He, J. Zhang, and J. Feng, “Gaitset: Regarding gait as a set for cross-view gait recognition,” in Proceedings of the AAAI conference on artificial intelligence, vol. 33, pp. 8126–8133, 2019.
  20. B. Lin, S. Zhang, and F. Bao, “Gait recognition with multiple-temporal-scale 3d convolutional neural network,” in Proceedings of the 28th ACM international conference on multimedia, pp. 3054–3062, 2020.
  21. K. Shiraga, Y. Makihara, D. Muramatsu, T. Echigo, and Y. Yagi, “Geinet: View-invariant gait recognition using a convolutional neural network,” in 2016 international conference on biometrics (ICB), pp. 1–8, IEEE, 2016.
  22. H. Chao, K. Wang, Y. He, J. Zhang, and J. Feng, “Gaitset: Cross-view gait recognition through utilizing gait as a deep set,” IEEE transactions on pattern analysis and machine intelligence, vol. 44, no. 7, pp. 3467–3478, 2021.
  23. S. Hou, C. Cao, X. Liu, and Y. Huang, “Gait lateral network: Learning discriminative and compact representations for gait recognition,” in European conference on computer vision, pp. 382–398, Springer, 2020.
  24. J. Liang, C. Fan, S. Hou, C. Shen, Y. Huang, and S. Yu, “Gaitedge: Beyond plain end-to-end gait recognition for better practicality,” in European Conference on Computer Vision, pp. 375–390, Springer, 2022.
  25. M. Wang, B. Lin, X. Guo, L. Li, Z. Zhu, J. Sun, S. Zhang, Y. Liu, and X. Yu, “Gaitstrip: Gait recognition via effective strip-based feature representations and multi-level framework,” in Proceedings of the Asian Conference on Computer Vision, pp. 536–551, 2022.
  26. B. Lin, S. Zhang, and X. Yu, “Gait recognition via effective global-local feature representation and local temporal aggregation,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14648–14656, 2021.
  27. Z. Huang, D. Xue, X. Shen, X. Tian, H. Li, J. Huang, and X.-S. Hua, “3d local convolutional neural networks for gait recognition,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14920–14929, 2021.
  28. C. Zhang, W. Liu, H. Ma, and H. Fu, “Siamese neural network based gait recognition for human identification,” in 2016 ieee international conference on acoustics, speech and signal processing (ICASSP), pp. 2832–2836, IEEE, 2016.
  29. P. Li, P. Pan, P. Liu, M. Xu, and Y. Yang, “Hierarchical temporal modeling with mutual distance matching for video based person re-identification,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 31, no. 2, pp. 503–511, 2021.
  30. Y. Fu, Y. Wei, Y. Zhou, H. Shi, G. Huang, X. Wang, Z. Yao, and T. Huang, “Horizontal pyramid matching for person re-identification,” in Proceedings of the AAAI conference on artificial intelligence, vol. 33, pp. 8295–8302, 2019.
  31. B. Lin, S. Zhang, M. Wang, L. Li, and X. Yu, “Gaitgl: Learning discriminative global-local feature representations for gait recognition,” arXiv preprint arXiv:2208.01380, 2022.
  32. F. Radenović, G. Tolias, and O. Chum, “Fine-tuning cnn image retrieval with no human annotation,” IEEE transactions on pattern analysis and machine intelligence, vol. 41, no. 7, pp. 1655–1668, 2018.
  33. A. Hermans, L. Beyer, and B. Leibe, “In defense of the triplet loss for person re-identification,” arXiv preprint arXiv:1703.07737, 2017.
  34. C. Fan, J. Liang, C. Shen, S. Hou, Y. Huang, and S. Yu, “Opengait: Revisiting gait recognition towards better practicality,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9707–9716, 2023.
  35. S. Zheng, J. Zhang, K. Huang, R. He, and T. Tan, “Robust view transformation model for gait recognition,” in 2011 18th IEEE International Conference on Image Processing, pp. 2073–2076, 2011.
  36. Z. Wu, Y. Huang, L. Wang, X. Wang, and T. Tan, “A comprehensive study on cross-view gait based human identification with deep cnns,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 2, pp. 209–226, 2017.
  37. N. Takemura, Y. Makihara, D. Muramatsu, T. Echigo, and Y. Yagi, “Multi-view large population gait dataset and its performance evaluation for cross-view gait recognition,” IPSJ transactions on Computer Vision and Applications, vol. 10, pp. 1–14, 2018.
  38. X. Huang, D. Zhu, H. Wang, X. Wang, B. Yang, B. He, W. Liu, and B. Feng, “Context-sensitive temporal feature learning for gait recognition,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12909–12918, 2021.
Citations (2)

Summary

We haven't generated a summary for this paper yet.