Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Human-Like Implicit Intention Expression for Autonomous Driving Motion Planning: A Method Based on Learning Human Intention Priors (2307.15950v3)

Published 29 Jul 2023 in cs.RO

Abstract: One of the key factors determining whether autonomous vehicles (AVs) can be seamlessly integrated into existing traffic systems is their ability to interact smoothly and efficiently with human drivers and communicate their intentions. While many studies have focused on enhancing AVs' human-like interaction and communication capabilities at the behavioral decision-making level, a significant gap remains between the actual motion trajectories of AVs and the psychological expectations of human drivers. This discrepancy can seriously affect the safety and efficiency of AV-HV (Autonomous Vehicle-Human Vehicle) interactions. To address these challenges, we propose a motion planning method for AVs that incorporates implicit intention expression. First, we construct a trajectory space constraint based on human implicit intention priors, compressing and pruning the trajectory space to generate candidate motion trajectories that consider intention expression. We then apply maximum entropy inverse reinforcement learning to learn and estimate human trajectory preferences, constructing a reward function that represents the cognitive characteristics of drivers. Finally, using a Boltzmann distribution, we establish a probabilistic distribution of candidate trajectories based on the reward obtained, selecting human-like trajectory actions. We validated our approach on a real trajectory dataset and compared it with several baseline methods. The results demonstrate that our method excels in human-likeness, intention expression capability, and computational efficiency.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.