Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Three remarks on $\mathbf{W_2}$ graphs (2307.15573v2)

Published 28 Jul 2023 in math.CO and cs.DM

Abstract: Let $k \geq 1$. A graph $G$ is $\mathbf{W_k}$ if for any $k$ pairwise disjoint independent vertex subsets $A_1, \dots, A_k$ in $G$, there exist $k$ pairwise disjoint maximum independent sets $S_1, \dots, S_k$ in $G$ such that $A_i \subseteq S_i$ for $i \in [k]$. Recognizing $\mathbf{W_1}$ graphs is co-NP-hard, as shown by Chv\'atal and Slater (1993) and, independently, by Sankaranarayana and Stewart (1992). Extending this result and answering a recent question of Levit and Tankus, we show that recognizing $\mathbf{W_k}$ graphs is co-NP-hard for $k \geq 2$. On the positive side, we show that recognizing $\mathbf{W_k}$ graphs is, for each $k\geq 2$, FPT parameterized by clique-width and by tree-width. Finally, we construct graphs $G$ that are not $\mathbf{W_2}$ such that, for every vertex $v$ in $G$ and every maximal independent set $S$ in $G - N[v]$, the largest independent set in $N(v) \setminus S$ consists of a single vertex, thereby refuting a conjecture of Levit and Tankus.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.