Cross-Modal Concept Learning and Inference for Vision-Language Models (2307.15460v1)
Abstract: Large-scale pre-trained Vision-LLMs (VLMs), such as CLIP, establish the correlation between texts and images, achieving remarkable success on various downstream tasks with fine-tuning. In existing fine-tuning methods, the class-specific text description is matched against the whole image. We recognize that this whole image matching is not effective since images from the same class often contain a set of different semantic objects, and an object further consists of a set of semantic parts or concepts. Individual semantic parts or concepts may appear in image samples from different classes. To address this issue, in this paper, we develop a new method called cross-model concept learning and inference (CCLI). Using the powerful text-image correlation capability of CLIP, our method automatically learns a large set of distinctive visual concepts from images using a set of semantic text concepts. Based on these visual concepts, we construct a discriminative representation of images and learn a concept inference network to perform downstream image classification tasks, such as few-shot learning and domain generalization. Extensive experimental results demonstrate that our CCLI method is able to improve the performance upon the current state-of-the-art methods by large margins, for example, by up to 8.0% improvement on few-shot learning and by up to 1.3% for domain generalization.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.