Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Detecting the Presence of COVID-19 Vaccination Hesitancy from South African Twitter Data Using Machine Learning (2307.15072v1)

Published 12 Jul 2023 in cs.CY, cs.CL, cs.LG, and cs.SI

Abstract: Very few social media studies have been done on South African user-generated content during the COVID-19 pandemic and even fewer using hand-labelling over automated methods. Vaccination is a major tool in the fight against the pandemic, but vaccine hesitancy jeopardizes any public health effort. In this study, sentiment analysis on South African tweets related to vaccine hesitancy was performed, with the aim of training AI-mediated classification models and assessing their reliability in categorizing UGC. A dataset of 30000 tweets from South Africa were extracted and hand-labelled into one of three sentiment classes: positive, negative, neutral. The machine learning models used were LSTM, bi-LSTM, SVM, BERT-base-cased and the RoBERTa-base models, whereby their hyperparameters were carefully chosen and tuned using the WandB platform. We used two different approaches when we pre-processed our data for comparison: one was semantics-based, while the other was corpus-based. The pre-processing of the tweets in our dataset was performed using both methods, respectively. All models were found to have low F1-scores within a range of 45$\%$-55$\%$, except for BERT and RoBERTa which both achieved significantly better measures with overall F1-scores of 60$\%$ and 61$\%$, respectively. Topic modelling using an LDA was performed on the miss-classified tweets of the RoBERTa model to gain insight on how to further improve model accuracy.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.