Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

EqGAN: Feature Equalization Fusion for Few-shot Image Generation (2307.14638v1)

Published 27 Jul 2023 in cs.CV

Abstract: Due to the absence of fine structure and texture information, existing fusion-based few-shot image generation methods suffer from unsatisfactory generation quality and diversity. To address this problem, we propose a novel feature Equalization fusion Generative Adversarial Network (EqGAN) for few-shot image generation. Unlike existing fusion strategies that rely on either deep features or local representations, we design two separate branches to fuse structures and textures by disentangling encoded features into shallow and deep contents. To refine image contents at all feature levels, we equalize the fused structure and texture semantics at different scales and supplement the decoder with richer information by skip connections. Since the fused structures and textures may be inconsistent with each other, we devise a consistent equalization loss between the equalized features and the intermediate output of the decoder to further align the semantics. Comprehensive experiments on three public datasets demonstrate that, EqGAN not only significantly improves generation performance with FID score (by up to 32.7%) and LPIPS score (by up to 4.19%), but also outperforms the state-of-the-arts in terms of accuracy (by up to 1.97%) for downstream classification tasks.

Citations (1)

Summary

We haven't generated a summary for this paper yet.