Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Novel BCI paradigm for ALS patients based on EEG and Pupillary Accommodative Response (2307.14541v1)

Published 26 Jul 2023 in cs.HC

Abstract: Brain-computer interfaces (BCIs) are one of the few alternatives to enable locked-in syndrome (LIS) patients to communicate with the external world, while they are the only solution for complete locked-in syndrome (CLIS) patients, who lost the ability to control eye movements. However, successful usage of endogenous electroencephalogram(EEG)-based BCI applications is often not trivial, due to EEG variations between and within sessions and long user training required. In this work we suggest an approach to deal with this two main limitations of EEG-BCIs by inserting a progressive and expandable neurofeedback training program, able to continuously tailor the classifier to the specific user, into a multimodal BCI paradigm. We propose indeed the integration of EEG with a non-brain signal: the pupillary accommodative response (PAR). The PAR is a change in pupil size associated with gaze shifts from far to close targets; it is not governed by the somatic nervous system and is thus potentially preserved after the evolution from LIS to CLIS, which often occurs in neurodegenerative diseases, such as amyotrophic lateral sclerosis. Multimodal BCIs have been broadly investigated in literature, due to their ability to yield better overall control performances, but this would be the first attempt combining EEG and PAR. In the context of the BciPar4Sla, we are exploiting these two signals, with the aim of developing a more reliable BCI, adaptive to the extent of evolving together with the user's ability to elicit the brain phenomena needed for optimal control, and providing support even in the transition from LIS to CLIS.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.