Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Piecewise Linear Functions Representable with Infinite Width Shallow ReLU Neural Networks (2307.14373v1)

Published 25 Jul 2023 in cs.LG and math.FA

Abstract: This paper analyzes representations of continuous piecewise linear functions with infinite width, finite cost shallow neural networks using the rectified linear unit (ReLU) as an activation function. Through its integral representation, a shallow neural network can be identified by the corresponding signed, finite measure on an appropriate parameter space. We map these measures on the parameter space to measures on the projective $n$-sphere cross $\mathbb{R}$, allowing points in the parameter space to be bijectively mapped to hyperplanes in the domain of the function. We prove a conjecture of Ongie et al. that every continuous piecewise linear function expressible with this kind of infinite width neural network is expressible as a finite width shallow ReLU neural network.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)