Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Prot2Text: Multimodal Protein's Function Generation with GNNs and Transformers (2307.14367v3)

Published 25 Jul 2023 in q-bio.QM, cs.CL, and cs.LG

Abstract: In recent years, significant progress has been made in the field of protein function prediction with the development of various machine-learning approaches. However, most existing methods formulate the task as a multi-classification problem, i.e. assigning predefined labels to proteins. In this work, we propose a novel approach, Prot2Text, which predicts a protein's function in a free text style, moving beyond the conventional binary or categorical classifications. By combining Graph Neural Networks(GNNs) and LLMs(LLMs), in an encoder-decoder framework, our model effectively integrates diverse data types including protein sequence, structure, and textual annotation and description. This multimodal approach allows for a holistic representation of proteins' functions, enabling the generation of detailed and accurate functional descriptions. To evaluate our model, we extracted a multimodal protein dataset from SwissProt, and demonstrate empirically the effectiveness of Prot2Text. These results highlight the transformative impact of multimodal models, specifically the fusion of GNNs and LLMs, empowering researchers with powerful tools for more accurate function prediction of existing as well as first-to-see proteins.

Citations (27)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 30 likes.

Upgrade to Pro to view all of the tweets about this paper: