Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Fast algorithms for k-submodular maximization subject to a matroid constraint (2307.13996v1)

Published 26 Jul 2023 in cs.DS and cs.LG

Abstract: In this paper, we apply a Threshold-Decreasing Algorithm to maximize $k$-submodular functions under a matroid constraint, which reduces the query complexity of the algorithm compared to the greedy algorithm with little loss in approximation ratio. We give a $(\frac{1}{2} - \epsilon)$-approximation algorithm for monotone $k$-submodular function maximization, and a $(\frac{1}{3} - \epsilon)$-approximation algorithm for non-monotone case, with complexity $O(\frac{n(k\cdot EO + IO)}{\epsilon} \log \frac{r}{\epsilon})$, where $r$ denotes the rank of the matroid, and $IO, EO$ denote the number of oracles to evaluate whether a subset is an independent set and to compute the function value of $f$, respectively. Since the constraint of total size can be looked as a special matroid, called uniform matroid, then we present the fast algorithm for maximizing $k$-submodular functions subject to a total size constraint as corollaries. corollaries.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.