Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Number Theoretic Accelerated Learning of Physics-Informed Neural Networks (2307.13869v2)

Published 26 Jul 2023 in cs.LG, cs.NA, and math.NA

Abstract: Physics-informed neural networks solve partial differential equations by training neural networks. Since this method approximates infinite-dimensional PDE solutions with finite collocation points, minimizing discretization errors by selecting suitable points is essential for accelerating the learning process. Inspired by number theoretic methods for numerical analysis, we introduce good lattice training and periodization tricks, which ensure the conditions required by the theory. Our experiments demonstrate that GLT requires 2-7 times fewer collocation points, resulting in lower computational cost, while achieving competitive performance compared to typical sampling methods.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 40 likes.

Upgrade to Pro to view all of the tweets about this paper: