Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Argument Attribution Explanations in Quantitative Bipolar Argumentation Frameworks (Technical Report) (2307.13582v3)

Published 25 Jul 2023 in cs.AI

Abstract: Argumentative explainable AI has been advocated by several in recent years, with an increasing interest on explaining the reasoning outcomes of Argumentation Frameworks (AFs). While there is a considerable body of research on qualitatively explaining the reasoning outcomes of AFs with debates/disputes/dialogues in the spirit of extension-based semantics, explaining the quantitative reasoning outcomes of AFs under gradual semantics has not received much attention, despite widespread use in applications. In this paper, we contribute to filling this gap by proposing a novel theory of Argument Attribution Explanations (AAEs) by incorporating the spirit of feature attribution from machine learning in the context of Quantitative Bipolar Argumentation Frameworks (QBAFs): whereas feature attribution is used to determine the influence of features towards outputs of machine learning models, AAEs are used to determine the influence of arguments towards topic arguments of interest. We study desirable properties of AAEs, including some new ones and some partially adapted from the literature to our setting. To demonstrate the applicability of our AAEs in practice, we conclude by carrying out two case studies in the scenarios of fake news detection and movie recommender systems.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube