Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Pay Attention to What You Need (2307.13365v3)

Published 25 Jul 2023 in cs.CL and cs.AI

Abstract: Although LLMs have achieved significant success in natural language processing, they still struggle with long-context comprehension. Traditional approaches to mitigating this issue typically rely on fine-tuning or retraining, which is both resource-intensive and challenging to deploy in lightweight industrial settings. In this paper, we investigate the potential to accomplish this without any additional resources. Through an in-depth study of the attention mechanism in LLMs, we propose a method called Scaled ReAttention (SRA) to strengthen LLMs' ability to interpret and retrieve information by strategically manipulating their attention scores during inference. Through extensive experiments, we demonstrate that integrating SRA significantly boosts LLMs' performance on a variety of downstream tasks, highlighting its practical potential for enhancing language understanding without incurring the overhead of traditional training.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.