Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

An Axiomatic Theory for Reversible Computation (2307.13360v2)

Published 25 Jul 2023 in cs.LO

Abstract: Undoing computations of a concurrent system is beneficial in many situations, e.g., in reversible debugging of multi-threaded programs and in recovery from errors due to optimistic execution in parallel discrete event simulation. A number of approaches have been proposed for how to reverse formal models of concurrent computation including process calculi such as CCS, languages like Erlang, and abstract models such as prime event structures and occurrence nets. However it has not been settled what properties a reversible system should enjoy, nor how the various properties that have been suggested, such as the parabolic lemma and the causal-consistency property, are related. We contribute to a solution to these issues by using a generic labelled transition system equipped with a relation capturing whether transitions are independent to explore the implications between various reversibility properties. In particular, we show how all properties we consider are derivable from a set of axioms. Our intention is that when establishing properties of some formalism it will be easier to verify the axioms rather than proving properties such as the parabolic lemma directly. We also introduce two new properties related to causal consistent reversibility, namely causal liveness and causal safety, stating, respectively, that an action can be undone if (causal liveness) and only if (causal safety) it is independent from all the following actions. These properties come in three flavours: defined in terms of independent transitions, independent events, or via an ordering on events. Both causal liveness and causal safety are derivable from our axioms.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.