Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Unbiased Weight Maximization (2307.13270v1)

Published 25 Jul 2023 in cs.LG and cs.AI

Abstract: A biologically plausible method for training an Artificial Neural Network (ANN) involves treating each unit as a stochastic Reinforcement Learning (RL) agent, thereby considering the network as a team of agents. Consequently, all units can learn via REINFORCE, a local learning rule modulated by a global reward signal, which aligns more closely with biologically observed forms of synaptic plasticity. Nevertheless, this learning method is often slow and scales poorly with network size due to inefficient structural credit assignment, since a single reward signal is broadcast to all units without considering individual contributions. Weight Maximization, a proposed solution, replaces a unit's reward signal with the norm of its outgoing weight, thereby allowing each hidden unit to maximize the norm of the outgoing weight instead of the global reward signal. In this research report, we analyze the theoretical properties of Weight Maximization and propose a variant, Unbiased Weight Maximization. This new approach provides an unbiased learning rule that increases learning speed and improves asymptotic performance. Notably, to our knowledge, this is the first learning rule for a network of Bernoulli-logistic units that is unbiased and scales well with the number of network's units in terms of learning speed.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)