Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Structural Credit Assignment with Coordinated Exploration (2307.13256v1)

Published 25 Jul 2023 in cs.LG and cs.AI

Abstract: A biologically plausible method for training an Artificial Neural Network (ANN) involves treating each unit as a stochastic Reinforcement Learning (RL) agent, thereby considering the network as a team of agents. Consequently, all units can learn via REINFORCE, a local learning rule modulated by a global reward signal, which aligns more closely with biologically observed forms of synaptic plasticity. However, this learning method tends to be slow and does not scale well with the size of the network. This inefficiency arises from two factors impeding effective structural credit assignment: (i) all units independently explore the network, and (ii) a single reward is used to evaluate the actions of all units. Accordingly, methods aimed at improving structural credit assignment can generally be classified into two categories. The first category includes algorithms that enable coordinated exploration among units, such as MAP propagation. The second category encompasses algorithms that compute a more specific reward signal for each unit within the network, like Weight Maximization and its variants. In this research report, our focus is on the first category. We propose the use of Boltzmann machines or a recurrent network for coordinated exploration. We show that the negative phase, which is typically necessary to train Boltzmann machines, can be removed. The resulting learning rules are similar to the reward-modulated Hebbian learning rule. Experimental results demonstrate that coordinated exploration significantly exceeds independent exploration in training speed for multiple stochastic and discrete units based on REINFORCE, even surpassing straight-through estimator (STE) backpropagation.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)