Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 78 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Social Optimum Equilibrium Selection for Distributed Multi-Agent Optimization (2307.13242v1)

Published 25 Jul 2023 in cs.GT

Abstract: We study the open question of how players learn to play a social optimum pure-strategy Nash equilibrium (PSNE) through repeated interactions in general-sum coordination games. A social optimum of a game is the stable Pareto-optimal state that provides a maximum return in the sum of all players' payoffs (social welfare) and always exists. We consider finite repeated games where each player only has access to its own utility (or payoff) function but is able to exchange information with other players. We develop a novel regret matching (RM) based algorithm for computing an efficient PSNE solution that could approach a desired Pareto-optimal outcome yielding the highest social welfare among all the attainable equilibria in the long run. Our proposed learning procedure follows the regret minimization framework but extends it in three major ways: (1) agents use global, instead of local, utility for calculating regrets, (2) each agent maintains a small and diminishing exploration probability in order to explore various PSNEs, and (3) agents stay with the actions that achieve the best global utility thus far, regardless of regrets. We prove that these three extensions enable the algorithm to select the stable social optimum equilibrium instead of converging to an arbitrary or cyclic equilibrium as in the conventional RM approach. We demonstrate the effectiveness of our approach through a set of applications in multi-agent distributed control, including a large-scale resource allocation game and a hard combinatorial task assignment problem for which no efficient (polynomial) solution exists.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.