Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 136 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

HeteFedRec: Federated Recommender Systems with Model Heterogeneity (2307.12810v3)

Published 24 Jul 2023 in cs.IR

Abstract: Owing to the nature of privacy protection, federated recommender systems (FedRecs) have garnered increasing interest in the realm of on-device recommender systems. However, most existing FedRecs only allow participating clients to collaboratively train a recommendation model of the same public parameter size. Training a model of the same size for all clients can lead to suboptimal performance since clients possess varying resources. For example, clients with limited training data may prefer to train a smaller recommendation model to avoid excessive data consumption, while clients with sufficient data would benefit from a larger model to achieve higher recommendation accuracy. To address the above challenge, this paper introduces HeteFedRec, a novel FedRec framework that enables the assignment of personalized model sizes to participants. In HeteFedRec, we present a heterogeneous recommendation model aggregation strategy, including a unified dual-task learning mechanism and a dimensional decorrelation regularization, to allow knowledge aggregation among recommender models of different sizes. Additionally, a relation-based ensemble knowledge distillation method is proposed to effectively distil knowledge from heterogeneous item embeddings. Extensive experiments conducted on three real-world recommendation datasets demonstrate the effectiveness and efficiency of HeteFedRec in training federated recommender systems under heterogeneous settings.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.