Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Integration of Frame- and Label-synchronous Beam Search for Streaming Encoder-decoder Speech Recognition (2307.12767v1)

Published 24 Jul 2023 in eess.AS and cs.SD

Abstract: Although frame-based models, such as CTC and transducers, have an affinity for streaming automatic speech recognition, their decoding uses no future knowledge, which could lead to incorrect pruning. Conversely, label-based attention encoder-decoder mitigates this issue using soft attention to the input, while it tends to overestimate labels biased towards its training domain, unlike CTC. We exploit these complementary attributes and propose to integrate the frame- and label-synchronous (F-/L-Sync) decoding alternately performed within a single beam-search scheme. F-Sync decoding leads the decoding for block-wise processing, while L-Sync decoding provides the prioritized hypotheses using look-ahead future frames within a block. We maintain the hypotheses from both decoding methods to perform effective pruning. Experiments demonstrate that the proposed search algorithm achieves lower error rates compared to the other search methods, while being robust against out-of-domain situations.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.