Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 130 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Physics-Informed Machine Learning of Argon Gas-Driven Melt Pool Dynamics (2307.12304v1)

Published 23 Jul 2023 in cs.LG and cs.CE

Abstract: Melt pool dynamics in metal additive manufacturing (AM) is critical to process stability, microstructure formation, and final properties of the printed materials. Physics-based simulation including computational fluid dynamics (CFD) is the dominant approach to predict melt pool dynamics. However, the physics-based simulation approaches suffer from the inherent issue of very high computational cost. This paper provides a physics-informed machine learning (PIML) method by integrating neural networks with the governing physical laws to predict the melt pool dynamics such as temperature, velocity, and pressure without using any training data on velocity. This approach avoids solving the highly non-linear Navier-Stokes equation numerically, which significantly reduces the computational cost. The difficult-to-determine model constants of the governing equations of the melt pool can also be inferred through data-driven discovery. In addition, the physics-informed neural network (PINN) architecture has been optimized for efficient model training. The data-efficient PINN model is attributed to the soft penalty by incorporating governing partial differential equations (PDEs), initial conditions, and boundary conditions in the PINN model.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.