Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Rail-only: A Low-Cost High-Performance Network for Training LLMs with Trillion Parameters (2307.12169v5)

Published 22 Jul 2023 in cs.NI, cs.AI, and cs.LG

Abstract: This paper presents a low-cost network architecture for training LLMs at hyperscale. We study the optimal parallelization strategy of LLMs and propose a novel datacenter network design tailored to LLM's unique communication pattern. We show that LLM training generates sparse communication patterns in the network and, therefore, does not require any-to-any full-bisection network to complete efficiently. As a result, our design eliminates the spine layer in traditional GPU clusters. We name this design a Rail-only network and demonstrate that it achieves the same training performance while reducing the network cost by 38% to 77% and network power consumption by 37% to 75% compared to a conventional GPU datacenter. Our architecture also supports Mixture-of-Expert (MoE) models with all-to-all communication through forwarding, with only 8.2% to 11.2% completion time overhead for all-to-all traffic. We study the failure robustness of Rail-only networks and provide insights into the performance impact of different network and training parameters.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.