Papers
Topics
Authors
Recent
2000 character limit reached

Fairness of ChatGPT and the Role Of Explainable-Guided Prompts

Published 14 Jul 2023 in cs.CL and cs.AI | (2307.11761v1)

Abstract: Our research investigates the potential of Large-scale LLMs, specifically OpenAI's GPT, in credit risk assessment-a binary classification task. Our findings suggest that LLMs, when directed by judiciously designed prompts and supplemented with domain-specific knowledge, can parallel the performance of traditional Machine Learning (ML) models. Intriguingly, they achieve this with significantly less data-40 times less, utilizing merely 20 data points compared to the ML's 800. LLMs particularly excel in minimizing false positives and enhancing fairness, both being vital aspects of risk analysis. While our results did not surpass those of classical ML models, they underscore the potential of LLMs in analogous tasks, laying a groundwork for future explorations into harnessing the capabilities of LLMs in diverse ML tasks.

Citations (15)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.