Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
9 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
40 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Comprehensive Introduction of Visual-Inertial Navigation (2307.11758v1)

Published 28 Jun 2023 in cs.RO

Abstract: In this article, a tutorial introduction to visual-inertial navigation(VIN) is presented. Visual and inertial perception are two complementary sensing modalities. Cameras and inertial measurement units (IMU) are the corresponding sensors for these two modalities. The low cost and light weight of camera-IMU sensor combinations make them ubiquitous in robotic navigation. Visual-inertial Navigation is a state estimation problem, that estimates the ego-motion and local environment of the sensor platform. This paper presents visual-inertial navigation in the classical state estimation framework, first illustrating the estimation problem in terms of state variables and system models, including related quantities representations (Parameterizations), IMU dynamic and camera measurement models, and corresponding general probabilistic graphical models (Factor Graph). Secondly, we investigate the existing model-based estimation methodologies, these involve filter-based and optimization-based frameworks and related on-manifold operations. We also discuss the calibration of some relevant parameters, also initialization of state of interest in optimization-based frameworks. Then the evaluation and improvement of VIN in terms of accuracy, efficiency, and robustness are discussed. Finally, we briefly mention the recent development of learning-based methods that may become alternatives to traditional model-based methods.

Citations (1)

Summary

We haven't generated a summary for this paper yet.