Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Reinforcement Learning Framework with Region-Awareness and Shared Path Experience for Efficient Routing in Networks-on-Chip (2307.11712v1)

Published 21 Jul 2023 in cs.DC

Abstract: Network-on-chip (NoC) architectures provide a scalable, high-performance, and reliable interconnect for emerging manycore systems. The routing policies used in NoCs have a significant impact on overall performance. Prior efforts have proposed reinforcement learning (RL)-based adaptive routing policies to avoid congestion and minimize latency in NoCs. The output quality of RL policies depends on selecting a representative cost function and an effective update mechanism. Unfortunately, existing RL policies for NoC routing fail to represent path contention and regional congestion in the cost function. Moreover, the experience of packet flows sharing the same route is not fully incorporated into the RL update mechanism. In this paper, we present a novel regional congestion-aware RL-based NoC routing policy called Q-RASP that is capable of sharing experience from packets using the same routes. Q-RASP improves average packet latency by up to 18.3% and reduces NoC energy consumption by up to 6.7% with minimal area overheads compared to state-of-the-art RL-based NoC routing implementations.

Citations (3)

Summary

We haven't generated a summary for this paper yet.