Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Improved Approximate Distance Oracles: Bypassing the Thorup-Zwick Bound in Dense Graphs (2307.11677v1)

Published 21 Jul 2023 in cs.DS

Abstract: Despite extensive research on distance oracles, there are still large gaps between the best constructions for spanners and distance oracles. Notably, there exist sparse spanners with a multiplicative stretch of $1+\varepsilon$ plus some additive stretch. A fundamental open problem is whether such a bound is achievable for distance oracles as well. Specifically, can we construct a distance oracle with multiplicative stretch better than 2, along with some additive stretch, while maintaining subquadratic space complexity? This question remains a crucial area of investigation, and finding a positive answer would be a significant step forward for distance oracles. Indeed, such oracles have been constructed for sparse graphs. However, in the more general case of dense graphs, it is currently unknown whether such oracles exist. In this paper, we contribute to the field by presenting the first distance oracles that achieve a multiplicative stretch of $1+\varepsilon$ along with a small additive stretch while maintaining subquadratic space complexity. Our results represent an advancement particularly for constructing efficient distance oracles for dense graphs. In addition, we present a whole family of oracles that, for any positive integer $k$, achieve a multiplicative stretch of $2k-1+\varepsilon$ using $o(n{1+1/k})$ space.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.