Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Subset Sampling and Its Extensions (2307.11585v1)

Published 21 Jul 2023 in cs.DS and cs.DB

Abstract: This paper studies the \emph{subset sampling} problem. The input is a set $\mathcal{S}$ of $n$ records together with a function $\textbf{p}$ that assigns each record $v\in\mathcal{S}$ a probability $\textbf{p}(v)$. A query returns a random subset $X$ of $\mathcal{S}$, where each record $v\in\mathcal{S}$ is sampled into $X$ independently with probability $\textbf{p}(v)$. The goal is to store $\mathcal{S}$ in a data structure to answer queries efficiently. If $\mathcal{S}$ fits in memory, the problem is interesting when $\mathcal{S}$ is dynamic. We develop a dynamic data structure with $\mathcal{O}(1+\mu_{\mathcal{S}})$ expected \emph{query} time, $\mathcal{O}(n)$ space and $\mathcal{O}(1)$ amortized expected \emph{update}, \emph{insert} and \emph{delete} time, where $\mu_{\mathcal{S}}=\sum_{v\in\mathcal{S}}\textbf{p}(v)$. The query time and space are optimal. If $\mathcal{S}$ does not fit in memory, the problem is difficult even if $\mathcal{S}$ is static. Under this scenario, we present an I/O-efficient algorithm that answers a \emph{query} in $\mathcal{O}\left((\log*_B n)/B+(\mu_\mathcal{S}/B)\log_{M/B} (n/B)\right)$ amortized expected I/Os using $\mathcal{O}(n/B)$ space, where $M$ is the memory size, $B$ is the block size and $\log*_B n$ is the number of iterative $\log_2(.)$ operations we need to perform on $n$ before going below $B$. In addition, when each record is associated with a real-valued key, we extend the \emph{subset sampling} problem to the \emph{range subset sampling} problem, in which we require that the keys of the sampled records fall within a specified input range $[a,b]$. For this extension, we provide a solution under the dynamic setting, with $\mathcal{O}(\log n+\mu_{\mathcal{S}\cap[a,b]})$ expected \emph{query} time, $\mathcal{O}(n)$ space and $\mathcal{O}(\log n)$ amortized expected \emph{update}, \emph{insert} and \emph{delete} time.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.