Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Prompt-Based Zero- and Few-Shot Node Classification: A Multimodal Approach (2307.11572v1)

Published 21 Jul 2023 in cs.SI

Abstract: Multimodal data empowers machine learning models to better understand the world from various perspectives. In this work, we study the combination of \emph{text and graph} modalities, a challenging but understudied combination which is prevalent across multiple settings including citation networks, social media, and the web. We focus on the popular task of node classification using limited labels; in particular, under the zero- and few-shot scenarios. In contrast to the standard pipeline which feeds standard precomputed (e.g., bag-of-words) text features into a graph neural network, we propose \textbf{T}ext-\textbf{A}nd-\textbf{G}raph (TAG) learning, a more deeply multimodal approach that integrates the raw texts and graph topology into the model design, and can effectively learn from limited supervised signals without any meta-learning procedure. TAG is a two-stage model with (1) a prompt- and graph-based module which generates prior logits that can be directly used for zero-shot node classification, and (2) a trainable module that further calibrates these prior logits in a few-shot manner. Experiments on two node classification datasets show that TAG outperforms all the baselines by a large margin in both zero- and few-shot settings.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)