Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 130 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

R2Det: Redemption from Range-view for Accurate 3D Object Detection (2307.11482v2)

Published 21 Jul 2023 in cs.CV

Abstract: LiDAR-based 3D object detection is of paramount importance for autonomous driving. Recent trends show a remarkable improvement for bird's-eye-view (BEV) based and point-based methods as they demonstrate superior performance compared to range-view counterparts. This paper presents an insight that leverages range-view representation to enhance 3D points for accurate 3D object detection. Specifically, we introduce a Redemption from Range-view Module (R2M), a plug-and-play approach for 3D surface texture enhancement from the 2D range view to the 3D point view. R2M comprises BasicBlock for 2D feature extraction, Hierarchical-dilated (HD) Meta Kernel for expanding the 3D receptive field, and Feature Points Redemption (FPR) for recovering 3D surface texture information. R2M can be seamlessly integrated into state-of-the-art LiDAR-based 3D object detectors as preprocessing and achieve appealing improvement, e.g., 1.39%, 1.67%, and 1.97% mAP improvement on easy, moderate, and hard difficulty level of KITTI val set, respectively. Based on R2M, we further propose R2Detector (R2Det) with the Synchronous-Grid RoI Pooling for accurate box refinement. R2Det outperforms existing range-view-based methods by a significant margin on both the KITTI benchmark and the Waymo Open Dataset. Codes will be made publicly available.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.