Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 157 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 397 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

"Tidy Up the Table": Grounding Common-sense Objective for Tabletop Object Rearrangement (2307.11319v2)

Published 21 Jul 2023 in cs.RO and cs.AI

Abstract: Tidying up a messy table may appear simple for humans, but articulating clear criteria for tidiness is challenging due to the ambiguous nature of common sense reasoning. LLMs have proven capable of capturing common sense knowledge to reason over this vague concept of tidiness. However, they alone may struggle with table tidying due to the limited grasp on the spatio-visual aspects of tidiness. In this work, we aim to ground the common-sense concept of tidiness within the context of object arrangement. Our survey reveals that humans usually factorize tidiness into semantic and visual-spatial tidiness; our grounding approach aligns with this decomposition. We connect a language-based policy generator with an image-based tidiness score function: the policy generator utilizes the LLM's commonsense knowledge to cluster objects by their implicit types and functionalities for semantic tidiness; meanwhile, the tidiness score function assesses the visual-spatial relations of the object to achieve visual-spatial tidiness. Our tidiness score is trained using synthetic data generated cheaply from customized random walks, which inherently encode the order of tidiness, thereby bypassing the need for labor-intensive human demonstrations. The simulated experiment shows that our approach successfully generates tidy arrangements, predominately in 2D, with potential for 3D stacking, for tables with various novel objects.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube