Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Constraint-based Recommender System via RDF Knowledge Graphs (2307.10702v1)

Published 20 Jul 2023 in cs.IR

Abstract: Knowledge graphs, represented in RDF, are able to model entities and their relations by means of ontologies. The use of knowledge graphs for information modeling has attracted interest in recent years. In recommender systems, items and users can be mapped and integrated into the knowledge graph, which can represent more links and relationships between users and items. Constraint-based recommender systems are based on the idea of explicitly exploiting deep recommendation knowledge through constraints to identify relevant recommendations. When combined with knowledge graphs, a constraint-based recommender system gains several benefits in terms of constraint sets. In this paper, we investigate and propose the construction of a constraint-based recommender system via RDF knowledge graphs applied to the vehicle purchase/sale domain. The results of our experiments show that the proposed approach is able to efficiently identify recommendations in accordance with user preferences.

Citations (1)

Summary

We haven't generated a summary for this paper yet.