Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Improving Semantic Similarity Measure Within a Recommender System Based-on RDF Graphs (2307.10639v1)

Published 20 Jul 2023 in cs.IR

Abstract: In today's era of information explosion, more users are becoming more reliant upon recommender systems to have better advice, suggestions, or inspire them. The measure of the semantic relatedness or likeness between terms, words, or text data plays an important role in different applications dealing with textual data, as in a recommender system. Over the past few years, many ontologies have been developed and used as a form of structured representation of knowledge bases for information systems. The measure of semantic similarity from ontology has developed by several methods. In this paper, we propose and carry on an approach for the improvement of semantic similarity calculations within a recommender system based-on RDF graphs.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.