Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Deep Neural Networks and Brain Alignment: Brain Encoding and Decoding (Survey) (2307.10246v3)

Published 17 Jul 2023 in q-bio.NC, cs.AI, cs.CL, cs.CV, cs.HC, and cs.LG

Abstract: Can artificial intelligence unlock the secrets of the human brain? How do the inner mechanisms of deep learning models relate to our neural circuits? Is it possible to enhance AI by tapping into the power of brain recordings? These captivating questions lie at the heart of an emerging field at the intersection of neuroscience and artificial intelligence. Our survey dives into this exciting domain, focusing on human brain recording studies and cutting-edge cognitive neuroscience datasets that capture brain activity during natural language processing, visual perception, and auditory experiences. We explore two fundamental approaches: encoding models, which attempt to generate brain activity patterns from sensory inputs; and decoding models, which aim to reconstruct our thoughts and perceptions from neural signals. These techniques not only promise breakthroughs in neurological diagnostics and brain-computer interfaces but also offer a window into the very nature of cognition. In this survey, we first discuss popular representations of language, vision, and speech stimuli, and present a summary of neuroscience datasets. We then review how the recent advances in deep learning transformed this field, by investigating the popular deep learning based encoding and decoding architectures, noting their benefits and limitations across different sensory modalities. From text to images, speech to videos, we investigate how these models capture the brain's response to our complex, multimodal world. While our primary focus is on human studies, we also highlight the crucial role of animal models in advancing our understanding of neural mechanisms. Throughout, we mention the ethical implications of these powerful technologies, addressing concerns about privacy and cognitive liberty. We conclude with a summary and discussion of future trends in this rapidly evolving field.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.