Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Towards fully integrated photonic backpropagation training and inference using on-chip nonlinear activation and gradient functions (2307.10179v1)

Published 16 Jun 2023 in cs.ET and physics.optics

Abstract: Gradient descent-based backpropagation training is widely used in many neural network systems. However, photonic implementation of such method is not straightforward mainly since having both the nonlinear activation function and its gradient using standard integrated photonic components is challenging. Here, we demonstrate the realization of two commonly used neural nonlinear activation functions and their gradients on a silicon photonic platform. Our method leverages the nonlinear electro-optic response of a micro-disk modulator. As a proof of concept, the experimental results are incorporated into a neural network simulation platform to classify MNIST handwritten digits dataset where we classification accuracies of more than 97\% are achieved that are on par with those of ideal nonlinearities and gradients.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.