Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Decision Making Framework for Recommended Maintenance of Road Segments (2307.10085v3)

Published 19 Jul 2023 in cs.AI

Abstract: Due to limited budgets allocated for road maintenance projects in various countries, road management departments face difficulties in making scientific maintenance decisions. This paper aims to provide road management departments with more scientific decision tools and evidence. The framework proposed in this paper mainly has the following four innovative points: 1) Predicting pavement performance deterioration levels of road sections as decision basis rather than accurately predicting specific indicator values; 2) Determining maintenance route priorities based on multiple factors; 3) Making maintenance plan decisions by establishing deep reinforcement learning models to formulate predictive strategies based on past maintenance performance evaluations, while considering both technical and management indicators; 4) Determining repair section priorities according to actual and suggested repair effects. By resolving these four issues, the framework can make intelligent decisions regarding optimal maintenance plans and sections, taking into account limited funds and historical maintenance management experiences.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)