Papers
Topics
Authors
Recent
2000 character limit reached

Stochastic Subgradient Methods with Guaranteed Global Stability in Nonsmooth Nonconvex Optimization (2307.10053v4)

Published 19 Jul 2023 in math.OC, cs.AI, cs.LG, and stat.ML

Abstract: In this paper, we focus on providing convergence guarantees for stochastic subgradient methods in minimizing nonsmooth nonconvex functions. We first investigate the global stability of a general framework for stochastic subgradient methods, where the corresponding differential inclusion admits a coercive Lyapunov function. We prove that, for any sequence of sufficiently small stepsizes and approximation parameters, coupled with sufficiently controlled noises, the iterates are uniformly bounded and asymptotically stabilize around the stable set of its corresponding differential inclusion. Moreover, we develop an improved analysis to apply our proposed framework to establish the global stability of a wide range of stochastic subgradient methods, where the corresponding Lyapunov functions are possibly non-coercive. These theoretical results illustrate the promising potential of our proposed framework for establishing the global stability of various stochastic subgradient methods.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 2 tweets with 19 likes about this paper.