Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deteksi Sampah di Permukaan dan Dalam Perairan pada Objek Video dengan Metode Robust and Efficient Post-Processing dan Tubelet-Level Bounding Box Linking (2307.10039v1)

Published 14 Jul 2023 in cs.CV and cs.RO

Abstract: Indonesia, as a maritime country, has a significant portion of its territory covered by water. Ineffective waste management has resulted in a considerable amount of trash in Indonesian waters, leading to various issues. The development of an automated trash-collecting robot can be a solution to address this problem. The robot requires a system capable of detecting objects in motion, such as in videos. However, using naive object detection methods in videos has limitations, particularly when image focus is reduced and the target object is obstructed by other objects. This paper's contribution provides an explanation of the methods that can be applied to perform video object detection in an automated trash-collecting robot. The study utilizes the YOLOv5 model and the Robust & Efficient Post Processing (REPP) method, along with tubelet-level bounding box linking on the FloW and Roboflow datasets. The combination of these methods enhances the performance of naive object detection from YOLOv5 by considering the detection results in adjacent frames. The results show that the post-processing stage and tubelet-level bounding box linking can improve the quality of detection, achieving approximately 3% better performance compared to YOLOv5 alone. The use of these methods has the potential to detect surface and underwater trash and can be applied to a real-time image-based trash-collecting robot. Implementing this system is expected to mitigate the damage caused by trash in the past and improve Indonesia's waste management system in the future.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Bryan Tjandra (1 paper)
  2. Made S. N. Negara (1 paper)
  3. Nyoo S. C. Handoko (1 paper)

Summary

We haven't generated a summary for this paper yet.