Emergent Mind

Abstract

Indonesia, as a maritime country, has a significant portion of its territory covered by water. Ineffective waste management has resulted in a considerable amount of trash in Indonesian waters, leading to various issues. The development of an automated trash-collecting robot can be a solution to address this problem. The robot requires a system capable of detecting objects in motion, such as in videos. However, using naive object detection methods in videos has limitations, particularly when image focus is reduced and the target object is obstructed by other objects. This paper's contribution provides an explanation of the methods that can be applied to perform video object detection in an automated trash-collecting robot. The study utilizes the YOLOv5 model and the Robust & Efficient Post Processing (REPP) method, along with tubelet-level bounding box linking on the FloW and Roboflow datasets. The combination of these methods enhances the performance of naive object detection from YOLOv5 by considering the detection results in adjacent frames. The results show that the post-processing stage and tubelet-level bounding box linking can improve the quality of detection, achieving approximately 3% better performance compared to YOLOv5 alone. The use of these methods has the potential to detect surface and underwater trash and can be applied to a real-time image-based trash-collecting robot. Implementing this system is expected to mitigate the damage caused by trash in the past and improve Indonesia's waste management system in the future.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.