Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

$\clubsuit$ CLOVER $\clubsuit$: Probabilistic Forecasting with Coherent Learning Objective Reparameterization (2307.09797v4)

Published 19 Jul 2023 in cs.LG and cs.AI

Abstract: Obtaining accurate probabilistic forecasts is an operational challenge in many applications, such as energy management, climate forecasting, supply chain planning, and resource allocation. Many of these applications present a natural hierarchical structure over the forecasted quantities; and forecasting systems that adhere to this hierarchical structure are said to be coherent. Furthermore, operational planning benefits from the accuracy at all levels of the aggregation hierarchy. However, building accurate and coherent forecasting systems is challenging: classic multivariate time series tools and neural network methods are still being adapted for this purpose. In this paper, we augment an MQForecaster neural network architecture with a modified multivariate Gaussian factor model that achieves coherence by construction. The factor model samples can be differentiated with respect to the model parameters, allowing optimization on arbitrary differentiable learning objectives that align with the forecasting system's goals, including quantile loss and the scaled Continuous Ranked Probability Score (CRPS). We call our method the Coherent Learning Objective Reparametrization Neural Network (CLOVER). In comparison to state-of-the-art coherent forecasting methods, CLOVER achieves significant improvements in scaled CRPS forecast accuracy, with average gains of 15%, as measured on six publicly-available datasets.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets