Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
124 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Domain Adaptation based Object Detection for Autonomous Driving in Foggy and Rainy Weather (2307.09676v4)

Published 18 Jul 2023 in cs.CV

Abstract: Typically, object detection methods for autonomous driving that rely on supervised learning make the assumption of a consistent feature distribution between the training and testing data, this such assumption may fail in different weather conditions. Due to the domain gap, a detection model trained under clear weather may not perform well in foggy and rainy conditions. Overcoming detection bottlenecks in foggy and rainy weather is a real challenge for autonomous vehicles deployed in the wild. To bridge the domain gap and improve the performance of object detection in foggy and rainy weather, this paper presents a novel framework for domain-adaptive object detection. The adaptations at both the image-level and object-level are intended to minimize the differences in image style and object appearance between domains. Furthermore, in order to improve the model's performance on challenging examples, we introduce a novel adversarial gradient reversal layer that conducts adversarial mining on difficult instances in addition to domain adaptation. Additionally, we suggest generating an auxiliary domain through data augmentation to enforce a new domain-level metric regularization. Experimental findings on public benchmark exhibit a substantial enhancement in object detection specifically for foggy and rainy driving scenarios.

Citations (2)

Summary

We haven't generated a summary for this paper yet.