Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adapting an ASR Foundation Model for Spoken Language Assessment (2307.09378v2)

Published 13 Jul 2023 in cs.CL, cs.SD, and eess.AS

Abstract: A crucial part of an accurate and reliable spoken language assessment system is the underlying ASR model. Recently, large-scale pre-trained ASR foundation models such as Whisper have been made available. As the output of these models is designed to be human readable, punctuation is added, numbers are presented in Arabic numeric form and abbreviations are included. Additionally, these models have a tendency to skip disfluencies and hesitations in the output. Though useful for readability, these attributes are not helpful for assessing the ability of a candidate and providing feedback. Here a precise transcription of what a candidate said is needed. In this paper, we give a detailed analysis of Whisper outputs and propose two solutions: fine-tuning and soft prompt tuning. Experiments are conducted on both public speech corpora and an English learner dataset. Results show that we can effectively alter the decoding behaviour of Whisper to generate the exact words spoken in the response.

Citations (8)

Summary

We haven't generated a summary for this paper yet.